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Abstract
In quantum mechanics, it is often important for the representation of a quantum
system to study the structure-preserving bijective maps of the system. Such
maps are also called isomorphisms or automorphisms. In this paper, using the
Uhlhorn-type of Wigner’s theorem, we show that both sum automorphisms
and Jordan triple automorphisms of the unit ball of density operators are
implemented by either unitary or anti-unitary operators of the underlying
Hilbert space.
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Mathematics Subject Classification: 81Q10, 47N50

1. Introduction

In quantum physics, of particular importance for the representation of a physical system are
structure-preserving bijective maps of the system. Such maps are also called isomorphisms or
automorphisms. Automorphisms or isomorphisms are frequently amenable to mathematical
formulation and can be exploited to simplify many problems. To date, they have been
extensively studied in different quantum systems, and systematic theories have been achieved
[9]. Recently, the most in-depth results in this field have been obtained by Monlar in a series
of articles [12–15]. An overview of recent results can be found in [5, 16].

Let us now fix the notations and set the problem in mathematical terms. Let H be a
separable Hilbert space with inner product 〈, 〉. Let B1(H) be the complex Banach space
of the trace class operators on H, with the trace tr(T ) and trace norm ‖T ‖1 = tr(|T |),
|T | = √

T ∗T , T ∈ B1(H). The self-adjoint part of B1(H) is denoted by B1r (H) which is a
real Banach space. By B1r

+(H) we denote the positive cone of B1r (H). As usual, the unit ball
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of B1r
+(H) is denoted by S1(H) = {T ∈ B1r

+(H) : tr(T ) = ‖T ‖1 � 1}, the surface of S1(H)

by V = {T ∈ B1r
+(H) : tr(T ) = 1}. With reference to the quantum physical applications,

B1r (H) is called the state space, and the elements ofB1r
+(H) and V are called density operators

and states, respectively (see [7, 9]). Naturally, S1(H) can be equipped with several algebraic
operations. For example, one can define a partial addition on it. Namely if T , S ∈ S1(H) and
T +S ∈ S1(H), then one can set T ⊕S = T +S. Furthermore, for T , S ∈ S1(H) and λ ∈ [0, 1],
λT + (1 − λ)S ∈ S1(H). Additionally, as for a multiplicative operation on S1(H), note that,
in general, T , S ∈ S1(H) does not imply that T S ∈ S1(H). However, we all the time have
T ST ∈ S1(H) since T ST ∈ B1r

+(H) and tr(T ST ) = ‖T ST ‖1 � ‖T ‖1‖S‖1‖T ‖1 � 1. This
multiplication is a nonassociative operation and sometimes called the Jordan triple product, and
also appears in infinite-dimensional holomorphy as well as in connection with the geometrical
properties of C∗-algebras.

Because of the importance of S1(H), it is a natural problem to study the automorphisms
of the mentioned structures. The aim of this paper is to contribute to these investigations.

The automorphisms of operator interval [0, I ] of positive bounded operators of H which
are bounded by the identity I with the operation of partial addition were described in [4]. The
automorphisms of [0, I ] with the operation of the Jordan triple product were investigated in
[11]. In this paper, we characterize the sum automorphisms and Jordan triple automorphisms
of S1(H). The core of the proof is to reduce the problem to using the Uhlhorn-type of Wigner’s
theorem (see [18]).

Now, let us give the concrete definitions of sum automorphism and Jordan triple
automorphism. A bijective map � : S1(H) → S1(H) is called a sum automorphism if

(1) T + S ∈ S1(H) ⇔ �(T ) + �(S) ∈ S1(H) for all T , S ∈ S1(H),

(2) �(T + S) = �(T ) + �(S) whenever T + S ∈ S1(H).

A bijective map � : S1(H) → S1(H) is called a Jordan triple automorphism if

�(T ST ) = �(T )�(S)�(T ) for all T , S ∈ S1(H).

Here, it is worth mentioning that the sum automorphism has an intimate relationship
with the so-called operation of B1(H) (see [6, 8]), which is a fundamental notion in quantum
theory. Recall that an operation � is a completely positive linear mapping on B1(H) such
that 0 � tr(�(T )) � 1 for every T ∈ V . An operation represents a probabilistic state
transformation. Namely if � is applied on an input state T, then the state transformation
T → �(T ) occurs with the probability tr(�(T )), in which case the output state is �(T )

tr(�(T ))
. By

the Kraus representation theorem [8], � is an operation if and only if there exists a countable
set of bounded linear operators {Ak} such that

∑
k A∗

kAk � I and �(T ) = ∑
k AkT A∗

k holds
for all T ∈ B1(H). This is very important in describing dynamics, measurements, quantum
channels, quantum interactions, quantum error, correcting codes, etc [17]. Since the operation
� is completely positive and 0 � tr(�(T )) � 1 for every T ∈ V , it is evident that such �

maps S1(H) into S1(H) and possesses conditions (1) and (2) mentioned in the definition of
sum automorphism. Thus, operations on B1(H) can be reduced to maps on S1(H). From
theorem 1, an explicit description can be given under the bijectivity assumption.

Our main results read as follows.

Theorem 1. � : S1(H) → S1(H) is a sum automorphism if and only if there exists an either
unitary or antiunitary operator U on H such that �(T ) = UT U ∗ for all T ∈ S1(H).

We remark that, in the above result, the bijectivity assumption is indispensable to obtain a
nice form of �. To show it, some examples originating from the Kraus representation theorem
will be given after the proof of theorem 1.
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Theorem 2. � : S1(H) → S1(H) is a Jordan triple automorphism if and only if there exists
an either unitary or antiunitary operator U on H such that �(T ) = UT U ∗ for all T ∈ S1(H).

It is worth mentioning that, as it turns out from theorems 1 and 2, the additive and
multiplicative structures of S1(H) are very closely related to each other. We remark
that the question when a multiplicative function is necessary additive is important in
quantum mechanics and mathematics, and was discussed for associative rings (note that our
multiplication is nonassociative) in the purely algebraic setting ([10], for a recent systematic
account, see [1]).

2. Proof of main results

This section is devoted to the proofs of our results. Before the proof, let us recall the
general structure of density operators (see for instance [2]). For T ∈ B+

1r (H), there exists an
orthonormal basis {en}n∈N of H and numbers λn > 0 such that

T =
+∞∑
n=1

λnPn

or

T x =
+∞∑
n=1

λn〈x, en〉en, ∀x ∈ H and 0 < tr(T ) =
+∞∑
n=1

λn < +∞,

where Pn is the one-dimensional projection onto the eigenspace spanned by the eigenvector
en. Let P1(H) stand for the set of all one-dimensional projections on H. With reference to the
quantum physical applications, the elements of P1(H) are called pure states. We begin with
a characterization of extreme points of S1(H).

Lemma 1. ext(S1(H)) = P1(H) ∪ {0}, where ext(S1(H)) denotes the set of extreme points
of S1(H).

Proof. First we prove P1(H) ∪ {0} ⊆ ext(S1(H)).
Suppose P ∈ P1(H), P = λT1 + (1−λ)T2 for some T1, T2 ∈ S1(H) and some λ ∈ [0, 1].

Without loss of generality, we may assume λ �= 0, 1. Then P � λT1, P � (1 − λ)T2; this
implies that both T1 and T2 are rank one operators. Thus, T1 = αP for some α ∈ [0, 1].
From 1 = tr(P ) = λ tr(T1) + (1 − λ)tr(T2) and tr(T1) � 1, tr(T2) � 1, we can obtain
tr(T1) = tr(T2) = 1. So T1 = P and similarly T2 = P , i.e. P is an extreme point of S1(H).
Clearly, 0 is an extreme point of S1(H). Thus, P1(H) ∪ {0} ⊆ ext(S1(H)).

In order to complete the proof of this lemma, we only need to show ext(S1(H)) ⊆
P1(H)∪{0}. In the first place, we show if T ∈ S1(H) and 0 < tr(T ) < 1, then T /∈ ext(S1(H)).
In fact, by spectral theorem of positive operators, T = �∞

n=0αnPn, where {Pn}∞n=0 is a mutually
orthogonal (PiPj = 0) sequence in P1(H), αn ∈ (0, 1), 0 < �∞

n=0αn = tr(T ) < 1, with
the series converging in the trace norm of B1(H). Choose the sequence {βn}∞n=0 ⊆ (0, 1)

such that αn < βn < 2αn and �∞
n=0βn < 1. Let γn = 2αn − βn, n = 0, 1, 2 . . .; then

0 < γn < αn. Set A = �∞
n=0βnPn, B = �∞

n=0γnPn; then it is easy to see that A,B ∈ S1(H) and
T = 1

2A + 1
2B. Therefore, T is not an extreme point of S1(H). From the above, we know that

ext(S1(H)) ⊆ {T : T ∈ S1(H), tr(T ) = 1}∪{0}. For any T ∈ S1(H), tr(T ) = 1 and T is not a
one-dimensional projection, we assert that T is not an extreme point of S1(H); this implies that
ext(S1(H)) ⊆ P1(H)∪{0}. In fact, by the spectral theorem, T = �∞

n=0αnPn and �∞
n=0αn = 1.

Then the rank of T is at least 2 and we can assume T = α1P1 +α2P2 (other cases can be treated

3
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similarly). Pick up β1, β2 ∈ (0, 1) such that α1 < β1 < 2α1, α2 > β2 and β1 + β2 = 1. Let
γ1 = 2α1 − β1, γ2 = 2α2 − β2; then γ1 + γ2 = 1 and T = 1

2 (β1P1 + β2P2) + 1
2 (γ1P1 + γ2P2).

�

Lemma 2. For P,Q ∈ P1(H), ‖P − Q‖1 = 2
√

1 − tr(PQ).

Proof. Suppose P = Px,Q = Qy , where x, y are unit vectors of H. If PQ = 0 or P = Q,
it is easy to see

‖P − Q‖1 = 2
√

1 − tr(PQ).

Thus, we assume PQ �= 0 and P �= Q; in this case, x, y are linearly independent. Applying

Schmidt’s orthogonalization, we obtain two normalized orthogonal vectors x,
x− y

〈y,x〉
‖x− y

〈y,x〉 ‖
. Let[

x,
x− y

〈y,x〉
‖x− y

〈y,x〉 ‖
]

denote the linear space spanned by x and
x− y

〈y,x〉
‖x− y

〈y,x〉 ‖
. Note that ‖P − Q‖1 =

tr(P + Q − PQ − QP)
1
2 and let A = P + Q − PQ − QP ; then according to the space

decomposition H = [
x,

x− y

〈y,x〉
‖x− y

〈y,x〉 ‖
] ⊕ [

x,
x− y

〈y,x〉
‖x− y

〈y,x〉 ‖
]⊥

, A = (∗ 0
0 0

)
. On the other hand,

Ax = (P + Q − PQ − QP)x

= x + 〈x, y〉y − |〈x, y〉|2x − 〈x, y〉y
= (1 − |〈x, y〉|2)x = (1 − tr(PQ))x,

A

(
x − y

〈y,x〉∥∥x − y

〈y,x〉
∥∥
)

= 1∥∥x − y

〈y,x〉
∥∥

(
Ax − 1

〈y, x〉Ay

)
= 1∥∥x − y

〈y,x〉
∥∥ ([1 − tr(PQ)]x) − (1 − tr(PQ))

〈y, x〉 y

= (1 − tr(PQ))

(
x − y

〈y,x〉∥∥x − y

〈y,x〉
∥∥
)

.

Therefore,

A =
⎛⎝1 − tr(PQ) 0 0

0 1 − tr(PQ) 0
0 0 0

⎞⎠
according to the space decomposition H = [x] ⊕ [ x− y

〈y,x〉
‖x− y

〈y,x〉 ‖
] ⊕ [

x,
x− y

〈y,x〉
‖x− y

〈y,x〉 ‖
]⊥

. This implies

that ‖P − Q‖1 = tr(A
1
2 ) = 2

√
1 − tr(PQ), as desired.

Now, we are in a position to prove our first theorem. �

Proof of theorem 1. The sufficiency is evident, so we only need to check the necessity. We
will finish the proof by checking several claims.

Claim 1. �(λT + (1 − λ)S) = λ�(T ) + (1 − λ)�(S) for all T , S ∈ S1(H) and λ ∈ [0, 1].

We first show that �(λT ) = λ�(T ) for every λ ∈ [0, 1], T ∈ S1(H). Clearly, �(0) = 0.
For any positive integer p ∈ N, we have

�(T ) = �

(
1

p
T + · · · +

1

p
T

)
= p�

(
1

p
T

)
(p summands).
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Hence, �
(

1
p
T

) = 1
p
�(T ). If q ∈ N with q � p, then

�

(
1

p
T + · · · +

1

p
T

)
= q�

(
1

p
T

)
= q

p
�(T ) (q summands).

We can obtain that �(rT ) = r�(T ) for every r ∈ Q ∩ [0, 1]. For T , S ∈ S1(H) with
S � T , there exists R ∈ S1(H) such that T = S + R. By the additive property of �, we have
�(T ) = �(S) + �(R), and so �(S) � �(T ). Since �−1 has the same properties as �, we
conclude that for T , S ∈ S1(H), S � T ⇔ �(S) � �(T ); that is, � preserves the order in
both directions. Assume λ ∈ [0, 1], T ∈ S1(H); then for any x ∈ H , we have

〈�(λT )x, x〉 � sup{〈�(rT )x, x〉 : r � λ, r ∈ Q ∩ [0, 1]}
= sup{〈r�(T )x, x〉 : r � λ, r ∈ Q ∩ [0, 1]}
= 〈�(T )x, x〉 sup{r, r � λ, r ∈ Q ∩ [0, 1]}
= 〈λ�(T )x, x〉,

so �(λT ) � λ�(T ).
Similarly,

〈�(λT )x, x〉 � inf{〈�(rT )x, x〉 : r � λ, r ∈ Q ∩ [0, 1]}
= inf{〈r�(T )x, x〉 : r � λ, r ∈ Q ∩ [0, 1]}
= 〈�(T )x, x〉 inf{r, r � λ, r ∈ Q ∩ [0, 1]}
= 〈λ�(T )x, x〉,

so �(λT ) � λ�(T ). Hence, �(λT ) = λ�(T ). For S, T ∈ S1(H) and λ ∈ [0, 1],
λT + (1 − λ)S ∈ S1(H),

�(λT + (1 − λ)S) = �(λT ) + �((1 − λ)S) = λ�(T ) + (1 − λ)�(S).

Claim 2. � is the restriction of a unique positive linear bijective operator on B1r (H).

In the following, we will prove that � has a unique positive linear bijective extension
from S1(H) to B1r (H). By the proof of claim 1, for each λ ∈ [0, 1] and T ∈ S1(H),
�(λT ) = λ�(T ). For T ∈ B+

1r (H), a natural extension of � from S1(H) to B+
1r (H) is to

define

�̃(T ) = ‖T ‖1�

(
T

‖T ‖1

)
.

Then for any λ � 0, one gets �̃(λT ) = λ�̃(T ), which is the positive homogeneity.
For T , S ∈ B+

1r (H), suppose �̃(T ) = �̃(S), without loss of generality, assume further
‖T ‖1 � ‖S‖1; then �̃

(
T

‖S‖1

) = �̃
(

S
‖S‖1

)
. Note that T

‖S‖1
, S

‖S‖1
∈ S1(H), by the injectivity of �,

T = S and thus �̃ is injective. Since �̃ is positive homogeneity, the surjectivity of � implies
that �̃ is surjective. So �̃ : B+

1r (H) → B+
1r (H) is a bijection.

For T1, T2 ∈ B+
1r (H), we can rewrite T1 + T2 in the form

T1 + T2 = (‖T1‖1 + ‖T2‖1)

( ‖T1‖1

‖T1‖1 + ‖T2‖1

T1

‖T1‖1
+

‖T2‖1

‖T1‖1 + ‖T2‖1

T2

‖T2‖1

)
.

The positive homogeneity of �̃ and claim 1 yield the additivity of �̃; that is, �̃(T1 + T2) =
�̃(T1) + �̃(T2).

Next, for T ∈ B1r (H), write T = T + − T −, where T + = 1
2 (|T | + T ), T − =

1
2 (|T | − T ), |T | = (T ∗T )

1
2 . Let

�̂(T ) = �̃(T +) − �̃(T −).

5
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Also, if T = T1 −T2 for some other T1, T2 ∈ B+
1r (H), then T + +T2 = T − +T1, by the additivity

of �̃, �̃(T +) − �̃(T −) = �̃(T1) − �̃(T2), which shows that �̂ is well defined. Furthermore,
for T ∈ B1r (H), it is easy to show that �̂(−T ) = −�̂(T ); combining the homogeneity of
�̃ over the non-negative real number, we know �̂ is linear. Assume �̂(T ) = 0, from the
definition of �̂, �̂(T +) = �̂(T −), i.e. �̃(T +) = �̃(T −). Now, the injectivity of �̃ implies
T + = T −, so T = 0 and �̂ is injective. From the surjectivity of �̃ and the linearity of �̂, it
is easy to see that �̂ is also surjective. Thus, �̂ is a bijection on B1r (H). In addition, a direct
computation shows that �̂−1 = �̂−1.

If � : B1r (H) → B1r (H) is another positive linear map which extends �, then for any
T ∈ B1r (H),

�(T ) = �(T + − T −) = �(T +) − �(T −)

= ‖T +‖1�

(
T +

‖T +‖1

)
− ‖T −‖1�

(
T −

‖T −‖1

)
= ‖T +‖1�

(
T +

‖T +‖1

)
− ‖T −‖1�

(
T −

‖T −‖1

)
= �̂(T +) − �̂(T −) = �̂(T ).

This shows that the extension is unique, as desired.

Claim 3. There exists an either unitary or antiunitary operator U on H such that �(T ) = UT U ∗

for all T ∈ S1(H).

Now, �̂ : B1r (H) → B1r (H) is a linear bijection and preserving positive trace class
operators in both directions. We assert that �̂ is continuous in the trace norm ‖.‖1. For
any T ∈ S1(H), clearly ‖�̂(T )‖1 = ‖�(T )‖1 � 1. For arbitrary T ∈ B1r (H), ‖T ‖1 � 1,
it is easy to see T + ∈ S1(H), T − ∈ S1(H). Thus ‖�̂(T )‖1 = ‖�̂(T +) − �̂(T −)‖1 �
‖�̂(T +)‖1 + ‖�̂(T −)‖1 � 2. It follows that �̂ is bounded on the unit ball of B1r (H); hence,
�̂ is continuous.

In the following, we will prove that �̂ is trace norm preserving. Firstly, it will be
shown that �̂ is trace preserving, i.e. tr(T ) = tr(�̂(T )) for every T ∈ B1r (H). Assume
T ∈ B+

1r (H), T = λ1P1 + λ2P2 + · · · + λnPn, where {Pi}ni=1 are mutually orthogonal one
dimensional projections, λi > 0, i = 1, 2 . . . , n. Then

�̂(T ) = λ1�̂(P1) + λ2�̂(P2) + · · · + λn�̂(Pn)

= λ1�(P1) + λ2�(P2) + · · · + λn�(Pn).

By claim 1, � preserves the extreme point of S1(H). From lemma 1 and �(0) = 0, we
have �(P1(H)) ⊆ P1(H). Since �−1 has the same properties as �, P1(H) ⊆ �(P1(H)),
so �(P1(H)) = P1(H). Therefore, we can obtain tr(T ) = tr(�̂(T )) = �n

i=1λi . For any
T ∈ B+

1r (H), by the spectral theorem of positive operators, there exists monotone increasing
sequence

{
Tn = �n

i=1λiPi

}∞
n=1 such that ‖Tn − T ‖1 = tr(T − Tn) = tr(T ) − tr(Tn) →

0(n → ∞), where {Pi}ni=1 are mutually orthogonal one dimensional projections, λi > 0, i =
1, 2, . . . , n. Since �̂ is positive preserving and continuous, {�̂(Tn)}∞n=1 is monotone increasing
and ‖�̂(Tn)− �̂(T )‖1 = tr(�̂(T ))− tr(�̂(Tn)) → 0(n → ∞). Note that tr(�̂(Tn)) = tr(Tn),
so for every T ∈ B+

1r (H), tr(T ) = tr(�̂(T )). For any T ∈ B1r (H),

tr(�̂(T )) = tr(�̂(T +)) − tr(�̂(T −)) = tr(T +) − tr(T −) = tr(T ),

So �̂ : B1r (H) → B1r (H) is positive and trace preserving.

6
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Next, we will show that �̂ preserves the trace norm. In fact, for any T ∈ B1r (H), we
have

‖�̂(T )‖1 = ‖�̂(T + − T −)‖1 = ‖�̂(T +) − �̂(T −)‖1

� ‖�̂(T +)‖1 + ‖�̂(T −)‖1 = tr(�̂(T +)) + tr(�̂(T −))

= tr(T +) + tr(T −) = tr(T + + T −) = tr(|T |) = ‖T ‖1.

So �̂ : B1r (H) → B1r (H) is contractive, i.e., for T ∈ B1r (H), ‖�̂(T )‖1 � ‖T ‖1. Since �̂−1

has the same properties as �̂, we have ‖�̂(T )‖1 � ‖T ‖1 and thus ‖�̂(T )‖1 = ‖T ‖1, that is
�̂ is a ‖ · ‖1-isometry of B1r (H).

Note that, by lemma 2, for P,Q ∈ P1(H), PQ = 0 ⇔ ‖P − Q‖1 = 2. Since �̂ is trace
norm preserving, we have PQ = 0 ⇔ �̂(P )�̂(Q) = 0. Now, �̂|P1(H) : P1(H) → P1(H) is
a bijection with the property PQ = 0 ⇔ �̂(P )�̂(Q) = 0, P ,Q ∈ P1(H). Using the well-
known Uhlhorn-type of Wigner’s theorem (see [18]), we have �̂(P ) = UPU ∗(P ∈ P1(H))

with some unitary or antiunitary operator on H. By the spectral theorem of self-adjoint operators
and the continuity of �̂, for all T ∈ B1r (H), �̂(T ) = UT U ∗; therefore, �(T ) = UT U ∗ for
all T ∈ S1(H), as desired.

Remark 1. Now, in order to illustrate that the bijective assumption is indispensable in
theorem 1, we give examples which come from the Kraus representation theorem (see [3]):
suppose that Ak is a finite set of bounded linear operators on H such that

∑
k AkA

∗
k = I , and

let �(T ) = ∑
k A∗

kT Ak ∀T ∈ B+
1r (H). For T ∈ B+

1r (H), there exists an orthonormal basis
{fj }j∈N of H such that

T x =
+∞∑
j=1

λj 〈x, fj 〉fj ∀x ∈ H and 0 �
+∞∑
j=1

λj < +∞.

Using the definition of �, for any orthonormal basis {ei}i∈N of H, we have∑
i

〈ei,�(T )ei〉 =
∑

j

∑
i

∑
k

λj 〈Akei, fj 〉〈fj , Akei〉

=
∑

j

λj

∑
i

∑
k

〈ei, A
∗
kfj 〉〈A∗

kfj , ei〉

=
∑

j

λj

∑
k

〈A∗
kfj , A

∗
kfj 〉 =

∑
j

λj .

This implies that tr(T ) = tr(�(T )) and so � is indeed a mapping which maps S1(H) into
S1(H). Furthermore, it is easy to see that � satisfies condition (1) and condition (2) in the
definition of sum automorphism. But, in general, such � is not a bijection and does not have
a nice form as theorem 1. Now, we give a concrete example. Let {ei}∞i=1 be the orthonormal
basis of H; then H can be presented as a direct sum of mutually orthogonal closed subspaces
H = ⊕3

k=1 Hk with dim Hk = dim H. Let Uk : H → Hk be unitary operators, ωk ∈ (0, 1)

with
∑3

k=1 ωk = 1. Set Ak = ω
1
2
k U ∗

k ; then
∑3

k=1 AkA
∗
k = I and �(T ) = ∑3

k=1 A∗
kT Ak

defines a trace preserving map of S1(H).

In the following, we will prove theorem 2.

Proof of theorem 2. The sufficiency is evident, so we only need to check the necessity.
First, we show that �(P1(H)) = P1(H). In fact, by the spectral mapping theorem, for any
P ∈ P1(H), σ(�(P )) ⊆ {0, 1}, where σ(�(P )) denotes the spectrum of �(P ). From the
bijectivity of �, it is easy to see �(0) = 0, and thus �(P1(H)) ⊆ P1(H). Since �−1 has the
same properties as �, P1(H) ⊆ �(P1(H)). Thus, �(P1(H)) = P1(H).

7
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Next observe that � preserves the orthogonality in both directions, that is, for T , S ∈
S1(H), T S = 0 ⇔ �(T )�(S) = 0. Indeed, if T S = 0, then �(0) = �(T ST ) =
�(T )�(S)�(T ) = 0, Thus,

0 = �(T )�(S)
1
2 �(S)

1
2 �(T ) = �(T )�(S)

1
2 (�(T )�(S)

1
2 )∗

which gives �(T )�(S)
1
2 = 0. So �(T )�(S) = 0. Since �−1 has the same properties as �,

we get the desired. Now � : P1(H) → P1(H) is a bijection and preserves orthogonality in
both directions. By the Uhlhorn-type of Wigner’s theorem (see [18]), there exists a unitary or
antiunitary operator U on H such that �(P ) = UPU ∗ for all P ∈ P1(H). Without loss of
generality, we can assume �(P ) = P for every P ∈ P1(H) and then we have to prove that �

is the identity on the whole S1(H).
In the following, we will prove �(λP ) = λP for every λ ∈ [0, 1] and every one-

dimensional projection P ∈ P1(H). To see this, we first show that there is a multiplicative
bijection f : [0, 1] → [0, 1] such that �(λP ) = f (λ)P . In fact, we can obtain

�(λP ) = �(P (λP )P ) = �(P )�(λP )�(P ) = fP (λ)P

for some fP (λ) ∈ [0, 1] which follows from �(P ) = P . We claim that fP is multiplicative.
For any μ ∈ [0, 1],

fP (λ2μ)P = �(λ2μP) = �((λP )(μP )(λP ))

= �(λP )�(μP )�(λP ) = fP (λ)2fP (μ)P.

Choosing μ = 1, we have fP (λ2) = fP (λ)2, and thus fP (λ2μ) = fP (λ2)fP (μ). Since this
holds for every λ,μ ∈ [0, 1], we conclude that fP is multiplicative. We now claim that fP does
not depend on P. If P,Q are one-dimensional projections which are not mutually orthogonal,
then PQP �= 0. In this case, we have

fQ(λ2)�(PQP) = fQ(λ2)�(P )�(Q)�(P ) = �(P )�(λ2Q)�(P )

= �(P (λ2Q)P ) = �((λP )Q(λP ))

= �(λP )�(Q)�(λP ) = fP (λ2)�(PQP).

This gives fP = fQ. If P,Q are mutually orthogonal, then there is a one-dimensional
projection R such that PR �= 0 and QR �= 0. Thus, we have fP = fR = fQ. So
there is a multiplicative function f : [0, 1] → [0, 1] such that �(λP ) = f (λ)P for
every λ ∈ [0, 1] and every one-dimensional projection P ∈ P1(H). By the bijectivity
of �, it is easy to see that f is also a bijection. In the following, we will show that
f is the identity function of [0, 1]. It is a folklore result in the theory of functional
equations that multiplicative bijections of [0, 1] are exactly the functions t → t s for some
fixed real number s > 0. So we have �(λP ) = λsP, λ ∈ [0, 1]. For T ∈ S1(H),
�(T PT ) = �(T )�(P )�(T ) = �(T )P�(T ) holds for each P ∈ P1(H); this implies
that �(T ) = λT T , where λT is a scalar depending on T. For orthogonal one-dimensional
projections P1, P2 ∈ P1(H), �

(
1
2P1 + 1

2P2
) = λ 1

2 P1+ 1
2 P2

(
1
2P1 + 1

2P2
)

contains

�
(

1
2P1 + 1

2P2
) = P1�

(
1
2P1 + 1

2P2
)
P1 + P2�

(
1
2P1 + 1

2P2
)
P2.

Using the properties of �,

P1�
(

1
2P1 + 1

2P2
)
P1 = �(P1)�

(
1
2P1 + 1

2P2
)
�(P1) = �

(
1
2P1

) = (
1
2

)s
P1.

Similarly,

P2�
(

1
2P1 + 1

2P2
)
P2 = (

1
2

)s
P2.
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Thus,

�
(

1
2P1 + 1

2P2
) = (

1
2

)s
P1 +

(
1
2

)s
P2.

From tr
((

1
2

)s
P1 +

(
1
2

)s
P2

)
� 1, we have s � 1.

Now, for every one-dimensional projection P ∈ S1(H) and every λ ∈ [0, 1], �(λP ) =
λsP, s � 1. Because �−1 has the same properties as �, we obtain that there exists t � 1 such
that �−1(λP ) = λtP, t � 1. Note that �−1(λsP ) = λP , �−1(λsP ) = λstP , so s = t = 1,
and thus �(λP ) = λP , as desired.

For T ∈ S1(H), picking an arbitrary one-dimensional projection P = Px , where x is a
unit vector, we compute

P�(T )P = �(P )�(T )�(P )

= �(PT P ) = �(〈T x, x〉P)

= 〈T x, x〉P = PT P.

Since P is arbitrary, we get �(T ) = T for every T ∈ S1(H), this completes the proof of this
theorem. �
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[2] Blanchard Ph and Brüning E 2003 Mathematical Methods in Physics Distrubitions Hilbert Space Operators

and Variational Methods (Progress in Mathematical Physics) (Boston, MA: Birkhäuser)
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